There continues to be a a lot of discussion about strengthening the core muscles. In this article I will discuss functional relationships that will inhibit the core muscles from being strengthened. Due to dysfunctional movement/coordination patterns, even the best of core strengthening programs will not be successful unless these dysfunctional patterns are reprogrammed. My approach, using NeuroKinetic Therapy, is to identify the muscles/functions that are inhibiting the core muscles. This can be easily accomplished through therapy localization. The spot (or spots) is then released using whatever techniques you already know and then the core muscles are retested to see if they are now facilitated. If the core muscles now test strong challenge them against the ones that were inhibiting them in the first place to see if your reprogramming protocol has been successful. If yes, then assign that sequence to your client as homework.
Let’s consider the psoas muscle as our first example. Any inhibition of a muscle that is centrally located will cause the motor control system to go into action to compensate for it because these muscles are crucial in all movements of the extremities and in spinal stabilization. A common pattern that I see is the psoas inhibited by the quadratus lumborum. Ipsilaterally this is considered an antagonistic relationship. Using the NKT protocol, first manually muscle test the psoas, and let’s assume it tests weak. Then find a tender spot on the quadratus lumborum and while holding it, retest the psoas. If the psoas now tests strong you know exactly which spot to release on the quadratus lumborum. After releasing the quadratus lumborum retest the psoas. If it now tests strong, then challenge it by testing the quadratus lumborum and retesting the psoas. If the psoas is able to withstand the challenge, you have successfully reprogrammed that dysfunctional pattern.
The psoas can also be inhibited by the hip flexors in a synergistic relationship. Muscles that I find that are commonly inhibiting the psoas in this group are the TFL, the proximal portion of the rectus femoris, the iliacus, and the adductors (especially the pectineus). Use the same NKT protocol to treat.
There are also core relationships to deal with. Inhibition of the psoas can cause facilitation, tightness, and pain in the lumbar spine and the sacroiliac joint. Because the psoas attaches to the lumbar intervertebral discs, it is crucial in the management of low back pain to deal properly with these dysfunctional relationships.
The last category of relationships to consider involves kinetic chains. It is not uncommon to find the psoas inhibited by the ipsilateral scalenes, the contralateral pectoralis minor, and the ipsilateral tibialis anterior. I find many unresolved cases of neck pain alleviated by addressing the relationship of the psoas to the scalenes. This can also contribute to TOS and other neurological problems involving the brachial plexus.
It is important to remember that just because the psoas is tight that doesn’t mean it needs to be stretched or worked deeply. The question you have to ask is why is it tight? If it is weak and tight the worst thing you can do is to stretch it. A weak muscle does not like to be stretched. It will cause a panic in the motor control system and the body will rebound by tightening it even more. When a muscle is weak it protects itself by shortening. It is crucial to first test a tight psoas to determine if it is weak or strong. If it is strong you can go ahead and stretch it. If it is weak you must first figure out why it is so and then rehabilitate it. When the psoas is strong then you can go ahead and stretch it.
In future blogs, we will discuss other core muscles and their global relationships, such as the transverse abdominis, the diaphragm, and the pelvic floor.